

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
FURTHER MATHEM	ATICS		9231/12
Paper 1			May/June 2019
			3 hours
Candidates answer of	on the Question Paper.		
Additional Materials:	List of Formulae (MF10)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

- 1 A curve *C* has equation $\cos y = x$, for $-\pi < x < \pi$.
 - (i) Use implicit differentiation to show that

	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\cot y \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2.$	[4]
(ii)	Hence find the exact value of $\frac{d^2y}{dx^2}$ at the point $(\frac{1}{2}, \frac{1}{3}\pi)$ on C .	[2]

2 Let
$$u_n = \frac{4\sin(n-\frac{1}{2})\sin\frac{1}{2}}{\cos(2n-1)+\cos 1}$$
.

(i) Using the formulae for $\cos P \pm \cos Q$ given in the List of Formulae MF10, show that

	$u_n = \frac{1}{\cos n} - \frac{1}{\cos n}$	$\frac{1}{\operatorname{cs}(n-1)}.$ [2]
(ii)	Use the method of differences to find $\sum_{n=1}^{N} u_n$.	[2]
(iii)	Explain why the infinite series $u_1 + u_2 + u_3 + \dots$	does not converge. [1]

The point \hat{P} position vect	for of P and Q .			e g is perpe		, our of and o	2. 111
				•••••			•••••
				•••••	•••••	•••••	•••••
						•••••	•••••
							•••••
				•••••	•••••		
•••••		••••••	•••••	•••••••••	••••••		•••••
••••••	•••••	••••••	•••••	•••••	•••••		•••••
•••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••
				••••••	•••••		•••••
					••••••		•••••
				•••••	•••••		•••••
							•••••
				•••••			•••••
			•••••				

•••••	•••••	••••••	••••••		•••••	•••••
				•••••		•••••
						••••••
						•••••
						•••••
			•••••	•••••		
						•••••
		•••••		••••••		
	•••••	••••••	•••••	•••••	•••••	••••••
•••••	•••••	••••••	••••••	•••••	•••••	•••••

4 It is given that, for $n \ge 0$,

$$I_n = \int_0^1 x^n e^{x^3} \, \mathrm{d}x.$$

Show that $I_2 = \frac{1}{3}(e - 1)$.		
Show that, for $n \ge 3$,	$3I_n = e - (n-2)I_{n-3}$.	

(iii)	Hence find the exact value of I_8 . [3]
` '	8

5 A curve C is defined parametrically by

$$x = \frac{2}{e^t + e^{-t}}$$
 and $y = \frac{e^t - e^{-t}}{e^t + e^{-t}}$,

for $0 \le t \le 1$. The area of the surface generated when C is rotated through 2π radians about the x-axis is denoted by S.

•••••
•••••
•••••
•••••
•••••

© UCLES 2019

ii)	Using the substitution $u = e^t + e^{-t}$, or otherwise, find S in terms of π and e.	[3]
		•••••

6	The eq	uation
---	--------	--------

$$x^3 - x + 1 = 0$$

has roots α , β , γ .

(i) Use th	ne relation $x = y^{\frac{1}{3}}$	to show that	the equation
------------	-----------------------------------	--------------	--------------

$$y^3 + 3y^2 + 2y + 1 = 0$$

y + 3y + 2y + 1 = 0	
has roots α^3 , β^3 , γ^3 . Hence write down the value of $\alpha^3 + \beta^3 + \gamma^3$.	[3]
	•••••
	•••••
	•••••
	•••••

© UCLES 2019

	11
Let	$S_n = \alpha^n + \beta^n + \gamma^n.$
(ii)	Find the value of S_{-3} . [2]
(iii)	Show that $S_6 = 5$ and find the value of S_9 . [4]

7	Find the	particular	solution	of the	differential	equation

on of the differential equation
$$10\frac{d^2x}{dt^2} + 3\frac{dx}{dt} - x = t + 2,$$

given that when $t = 0$, $x = 0$ and $\frac{dx}{dt} = 0$.	[10]

•••••	••••••		 	
•••••		•••••	 	•••••
		•••••	 	

		14
8	(i)	Prove by mathematical induction that, for $z \neq 1$ and all positive integers n ,
		$1 + z + z^{2} + \dots + z^{n-1} = \frac{z^{n} - 1}{z - 1}.$ [5]

$\sum_{m=1}^{\infty} \left(\frac{1}{2}\right)^m \sin m\theta = \frac{2\sin\theta}{5 - 4\cos\theta}.$	

(i) Show that e is	an eigenvector	of \mathbf{A}^2 , with c	orresponding eiger	ivalue λ^2 .	
	$\mathbf{A} = \begin{pmatrix} n \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 \\ 2n & 0 \\ 0 & 3n \end{pmatrix}$	and $\mathbf{B} = (\mathbf{A} + n\mathbf{I})$	$(1)^2$,	
The matrices A and where I is the 3×3 (ii) Find, in terms	$\mathbf{A} = \begin{pmatrix} n \\ 0 \\ 0 \end{pmatrix}$ 3 identity matrix	$\begin{pmatrix} 1 & 3 \\ 2n & 0 \\ 0 & 3n \end{pmatrix}$ ax and <i>n</i> is a no	on-zero integer.		$\mathbf{B} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}.$
where I is the 3×3	$\mathbf{A} = \begin{pmatrix} n \\ 0 \\ 0 \end{pmatrix}$ 3 identity matrix	$\begin{pmatrix} 1 & 3 \\ 2n & 0 \\ 0 & 3n \end{pmatrix}$ ax and <i>n</i> is a no			$\mathbf{B} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}.$
where I is the 3×3	$\mathbf{A} = \begin{pmatrix} n \\ 0 \\ 0 \end{pmatrix}$ 3 identity matrix	$\begin{pmatrix} 1 & 3 \\ 2n & 0 \\ 0 & 3n \end{pmatrix}$ ax and <i>n</i> is a no	on-zero integer.		$\mathbf{B} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}.$
where I is the 3×3	$\mathbf{A} = \begin{pmatrix} n \\ 0 \\ 0 \end{pmatrix}$ 3 identity matrix	$\begin{pmatrix} 1 & 3 \\ 2n & 0 \\ 0 & 3n \end{pmatrix}$ ax and <i>n</i> is a no	on-zero integer.		$\mathbf{B} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}.$
where I is the 3×3	$\mathbf{A} = \begin{pmatrix} n \\ 0 \\ 0 \end{pmatrix}$ 3 identity matrix	$\begin{pmatrix} 1 & 3 \\ 2n & 0 \\ 0 & 3n \end{pmatrix}$ ax and <i>n</i> is a no	on-zero integer.		$\mathbf{B} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}.$
where I is the 3×3	$\mathbf{A} = \begin{pmatrix} n \\ 0 \\ 0 \end{pmatrix}$ 3 identity matrix	$\begin{pmatrix} 1 & 3 \\ 2n & 0 \\ 0 & 3n \end{pmatrix}$ ax and <i>n</i> is a no	on-zero integer.		$\mathbf{B} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.
where I is the 3×3	$\mathbf{A} = \begin{pmatrix} n \\ 0 \\ 0 \end{pmatrix}$ 3 identity matrix	$\begin{pmatrix} 1 & 3 \\ 2n & 0 \\ 0 & 3n \end{pmatrix}$ ax and <i>n</i> is a no	on-zero integer.		B = PDP ⁻¹ .
where I is the 3×3	$\mathbf{A} = \begin{pmatrix} n \\ 0 \\ 0 \end{pmatrix}$ 3 identity matrix	$\begin{pmatrix} 1 & 3 \\ 2n & 0 \\ 0 & 3n \end{pmatrix}$ ax and <i>n</i> is a no	on-zero integer.		$\mathbf{B} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.
where I is the 3×3	$\mathbf{A} = \begin{pmatrix} n \\ 0 \\ 0 \end{pmatrix}$ 3 identity matrix	$\begin{pmatrix} 1 & 3 \\ 2n & 0 \\ 0 & 3n \end{pmatrix}$ ax and <i>n</i> is a no	on-zero integer.		B = PDP ⁻¹ .

 ••••••		•••••	
 ••••••			
 •••••	•••••		 ••••••
 •••••	•••••	•••••	
 •••••			 •••••
 			 •••••
 •••••			 •••••
 •••••			 •••••
 			 •••••
 			 •••••

10 The curves C_1 and C_2 have equations

$$y = \frac{ax}{x+5}$$
 and $y = \frac{x^2 + (a+10)x + 5a + 26}{x+5}$

respectively, where a is a constant and a > 2.

(i)	Find the equations of the asymptotes of C_1 .	[2]
(ii)	Find the equation of the oblique asymptote of C_2 .	[2]
(iii)	Show that C_1 and C_2 do not intersect.	[2]

(iv)	Find the coordinates of the stationary points of C_2 .	[3]
(v)	Sketch C_1 and C_2 on a single diagram. [You do not need to calculate the coordination points where C_2 crosses the axes.]	ates of any [3]

11 Answer only **one** of the following two alternatives.

EITHER

The curve C_1 has polar equation $r^2=2\theta$, for $0\leqslant\theta\leqslant\frac{1}{2}\pi$.

(i) The point on C_1 furthest from the line $\theta = \frac{1}{2}\pi$ is denoted by P. Show that, at P,

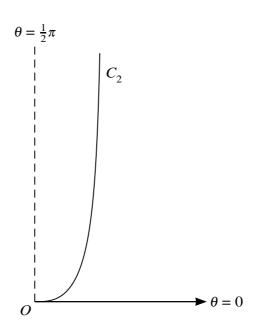
 $2\theta \tan \theta = 1$

20 tan 0 – 1	
and verify that this equation has a root between 0.6 and 0.7.	[5]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

The curve C_2 has polar equation $r^2 = \theta \sec^2 \theta$, for $0 \le \theta < \frac{1}{2}\pi$. The curves C_1 and C_2 intersect at the pole, denoted by O, and at another point Q.

1)	Find the exact value of θ at Q .	[2]
		•••••
		•••••
		•••••
		•••••

(iii) The diagram below shows the curve C_2 . Sketch C_1 on this diagram. [2]



(iv)	Find, in exact form, the area of the region OPQ enclosed by C_1 and C_2 . [5]

OR

The linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^4$ is represented by the matrix

$$\mathbf{M} = \begin{pmatrix} -1 & 2 & 3 & 4 \\ 1 & 0 & 1 & -1 \\ 1 & -2 & -3 & a \\ 1 & 2 & 5 & 2 \end{pmatrix}.$$

- (i) For $a \neq -4$, the range space of T is denoted by V.
 - (a) Find the dimension of V and show that

$$\begin{pmatrix} -1\\1\\1\\1 \end{pmatrix}, \quad \begin{pmatrix} 2\\0\\-2\\2 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 4\\-1\\a\\2 \end{pmatrix}$$

Form a basis for V .	[5]
	•••••

(b)	Show that if $\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$	belongs to V then $x + 2y = t$. [4]
	•••••	

ĺ	Ίi) For	a = -4.	find	the	general	solution	of
٦	·	,	.,	11114	CIIC	Someran	DOIGHOIL	01

$\mathbf{M}\mathbf{x} = \begin{pmatrix} -1\\1\\1\\1 \end{pmatrix}.$	5]
	•••
	•••
	•••
	•••
	· • •
	· • •
	· • •
	· • •
	.
	••
	••
	•••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.				

27

BLANK PAGE

28

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.