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1  Acurve C has equation cosy = x, for —-n < x < 7.

(i) Use implicit differentiation to show that

dzy dy 2
@ :—COty(a) . [4]
2
(ii) Hence find the exact value of — at the point (% %n) on C [2]
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4 sin(n — %) sin%

2 Letu = .
il cos(2n—1) +cos 1

(i) Using the formulae for cos P + cos Q given in the List of Formulae MF10, show that

y = 1 1 2]

n~ cosn cos(n—1)

N

(ii) Use the method of differences to find Z u,. [2]
n=1

(iii) Explain why the infinite series u, + u, + U, + ... does not converge [1]
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3 The lines /; and [, have equations r = 6i + 2j + 7k + A(i + j) and r = 4i + 4j + u(-6j + k) respectively.
The point P on /, and the point Q on [, are such that PQ is perpendicular to both /; and /,. Find the
position vectors of P and Q. [8]
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4 It is given that, for n = 0,

(i) Show thatl, = {(e—1). [2]
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S A curve C is defined parametrically by
e —e’
YT YT

for 0 <7< 1. The area of the surface generated when C is rotated through 2z radians about the x-axis
is denoted by S.

Do et
(i) Show that S =4x —dr. [5]

o (e"+ e‘t)2
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t

(ii) Using the substitution u = e’ + e, or otherwise, find S in terms of 7 and e. [3]
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6  The equation
x-x+1=0

has roots «, f3, y.

1
(i) Use the relation x = y3 to show that the equation
Y +3y2+2y+1=0

has roots o, B3, y3. Hence write down the value of o + B3 + y3. [3]
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LetS, =ao"+p" + 7"
(ii) Find the value of §_5. [2]
(iii) Show that 56 = 5 and find the value of Sg. [4]
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7  Find the particular solution of the differential equation

d’x _dx
10— +3— —x=1+2,
dr? ar
. dx
given that when 7 =0, x =0 and — = 0. [10]

dr
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8 (i) Prove by mathematical induction that, for z # 1 and all positive integers #,
n-1 z' -1

l+z+22 4.+ =2, [5]
z—1
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(ii) By letting z = %(cos 0 +isin ), use de Moivre’s theorem to deduce that

- 2sin O
1ym . - =Y
mz;](z) sinm6 5 dcosO [5]
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9 Itis given that e is an eigenvector of the matrix A, with corresponding eigenvalue A.

(i) Show that e is an eigenvector of A2, with corresponding eigenvalue A% [2]

The matrices A and B are given by

n 1 3
A=(O 2n 0) and B = (A +nl)?,
0O O 3n

where I is the 3 x 3 identity matrix and » is a non-zero integer.

(ii) Find, in terms of n, a non-singular matrix P and a diagonal matrix D such that B = PDP . [8]
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10 The curves C, and C, have equations

x>+ (a+10)x + 5a + 26

y= X and y=

T Xx+5 xX+5

respectively, where a is a constant and a > 2.

(i) Find the equations of the asymptotes of C,.
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(iv) Find the coordinates of the stationary points of C,. [3]

(v) Sketch C, and C, on a single diagram. [You do not need to calculate the coordinates of any
points where C2 crosses the axes.] [3]
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11 Answer only one of the following two alternatives.
EITHER

The curve C, has polar equation r? =26, for0< 6 < %n

(i) The point on C, furthest from the line 6 = %7‘[ is denoted by P. Show that, at P,
20tan 6 =1

and verify that this equation has a root between 0.6 and 0.7. [5]
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The curve C, has polar equation r? = 0sec’6, for 0 < 0 < %7‘[. The curves C| and C, intersect at the
pole, denoted by O, and at another point Q.

(ii) Find the exact value of 0 at Q. [2]
(iii) The diagram below shows the curve C,. Sketch C, on this diagram. [2]
0= %n

|

|

| C2

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

I » =

0 6=0
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(iv) Find, in exact form, the area of the region OPQ enclosed by C , and C2. [5]
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OR

The linear transformation T : R* — R* is represented by the matrix

-1 2 3 4
1 0 1 -1

(i) For a # —4, the range space of T is denoted by V.

(a) Find the dimension of V and show that

-1 2 4
1 0 -1
nE 5 and 4
1 2 2
form a basis for V. [5]
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(b) Show that if belongs to V then x + 2y = t. [4]

~ N <2 %
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(ii) For a = —4, find the general solution of

[5]
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Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

© UCLES 2019 9231/12/M/J/19



PMT

27

BLANK PAGE

© UCLES 2019 9231/12/M/J/19



28

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable
effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will
be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment
International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at
www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of
Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2019 9231/12/M/J/19

PMT





